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Summary

We present formal and numerical error analyses of the
phase-screen (or split-step Fourier) propagator. Nu-
merical results suggest that the propagator is accu-
rate up to 60 degrees propagation angle relative the
main propagation direction for media with small ve-
locity perturbations. We investigate the errors from
various approaches for splitting the exponential oper-
ator of the phase-screen propagator. The symmetri-
cally split equations are slightly more accurate than
the one-step split equations. Numerical examples
show that the di�erences among splitting approaches
are not signi�cant. Therefore, relative to the sym-
metrically split equations, the one-step-free one-step-
perturbation split equation is more e�cient for mi-
gration in which wave�elds in the space domain at
all depth levels must be calculated. However, the
half-step-free one-step-perturbation half-step-free split
equation has almost the same e�ciency as the one-step
split equations for forward wave simulations.

Introduction

The phase-screen (or split-step Fourier) propagator
has been used for modeling forward and re
ected wave
propagation (e.g. Wu and Huang, 1992; Wu et al.,
1995) and migration (e.g. Sto�a et al., 1990; Huang
and Wu, 1996). Cheng et al. (1996) gave a formal er-
ror analysis of the phase-screen propagator by de�ning
a propagation angle in a reference medium and con-
cluded that the propagation angle should be less than
40 degrees to control the error from expansion of the
square-root operator to under 5%. However, we are
interested in understanding how accurate the phase-
screen propagator is for a given propagation angle in
a real medium rather than in a reference medium. We
analyze the error from expansion of the square-root
operator and from splitting the exponential operator
of the phase-screen propagator using the formal and
numerical methods.

Expansion of the square-root operator

The one-way wave equation is given by
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where p(x; y; z;!) is the pressure in the frequency do-
main, ! is the circular frequency, and v(x; y; z) is the
velocity of the medium. Equation (1) leads to the
equation for wave-�eld extrapolation

p(x; y; z +�z;!) = ei�zQp(x; y; z;!) ; (3)

where �z is the vertical extrapolation interval.

In the phase-screen propagator (cf. Sto�a, et al.,
1990; Wu and Huang, 1992), by choosing a reference
mediumwith a velocity v0(z), the square-root operator
Q is approximated by
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where k0(z) � !=v0(z) is the wavenumber in the ref-
erence medium, and n(x; y; z) � v0(z)=v(x; y; z) is the
refraction index.

Error from expansion of the square-root oper-

ator

To evaluate the error introduced by expansion of
the square-root operator, we consider a homogeneous
medium with a velocity v(x; y; z) = const. Making use
of equation (2) and Fourier transforming equation (1)
over x and y yields the equation for the Fourier trans-
form of Q given by

eQ = k
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where k = !=v is the wavenumber and kT =
p

k2x + k2y
is the transverse component of the wavenumber. Us-
ing equation (4) and Fourier transforming equation (1)
over x and y leads to the equation for the Fourier trans-
form of Q0 given by
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Figure 1: Contours of the relative error from expansion

of the square-root operator versus propagation angle and

relative velocity perturbation.
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Figure 2: Contours of the relative traveltime error of the

phase-screen propagator versus propagation angle and rel-

ative velocity perturbation.

For a plane wave propagating along a propagation an-
gle � relative to the main propagation direction z-axis,

equation (5) becomes

eQ = k cos� ; (7)

and equation (6) can be written as

fQ0 = k
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For one-way wave propagation or migration problems,
the angle � is restricted by 0 � � < 90, and hence,eQ > 0 if ! 6= 0. The relative error de�ned by Er ��fQ0 � eQ� = eQ is therefore given by
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In terms of the relative slowness perturbation �n =
n� 1, equation (9) can be written as
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Alternatively, Er versus the relative velocity pertur-
bation �nv � (v � v0)=v0 is given by

Er(�; �nv) =
1

cos�

hp
(1 + �nv)2 � sin2�

��nv � cos�] : (11)

Equations (9){(11) indicate that Er = 0 if � = 0
for waves propagating along z-axis, or if �n = 0
(i.e. n = 1, �nv = 0) for a homogeneous medium,
as expected. The relative error contours versus the
propagation angle � and the relative velocity perturba-
tion �nv are displayed in Figure 1. The �gure demon-
strates that, the relative error caused by expansion of
the square-root operator is �5% when the propagation
angles are about 40{45 degrees and the relative veloc-
ity perturbations are �10%. The propagation angles
are shrunk to about 17{25 degrees when the relative
velocity perturbations are either 100% or -50%.
To analyze the accuracy of the phase-screen propa-

gator, relative traveltime errors of seismograms gener-
ated by the phase-screen method were calculated. A
2D homogeneous model de�ned on a grid 1024�100
was used. The grid spacings along x- and z-axis are
both 10m. The velocity of the model is 4000m/s. A
point source with a Ricker's time history and a dom-
inant frequency 20Hz was introduced at grid point
(512,1). The seismogram was recorded at each grid
point from (512,100) to (512,1023), which corresponds
to propagation angles ranging from 0 to 79 degrees
relative to z-axis. Ideal seismograms were computed
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using an analytical solution. Seismograms were gen-
erated using the phase-screen propagator for relative
velocity perturbations ranging from 2.5% to 100% with
an interval of 2.5% for the case of positive perturba-
tion, and ranging from -1% to -50% with an interval
of -1% for the case of negative perturbation. Rela-
tive traveltime errors were computed for each calcula-
tion and their contours are shown in Figure 2. We see
from Figure 2(a) and (b) that, for �5% relative travel-
time errors, the propagation angles are approximately
60 degrees when the relative velocity perturbations are
�10%, while the propagation angles are about 18{25
degrees when the relative velocity perturbations are ei-
ther 100% or -50%. In general, numerical tests suggest
that the phase-screen propagator can handle larger
propagation angles than what are estimated by Fig-
ure 1 for given velocity perturbation and relative error
levels.

Error from splitting the exponential operator

Substituting equation (4) into equation (3) yields

p(x; y; z +�z;!) = e
(A+B)�z

p(x; y; z;!) ; (12)

where operators A and B are de�ned by

A = i k0(z) [n(x; y; z)� 1] ; (13)
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Jensen et al. (1994) discussed the following di�erent
approaches for splitting the exponential operator,
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The terms with operator B are evaluated by a Fourier
transform and the phase-screen marching solutions
corresponding to each of the above four spitting ap-
proaches can be written as
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where the variables x, y, and ! in the pressure func-
tions have been omitted, F and F�1 represent re-
spectively the forward and inverse Fourier transforms
over x and y, a � i k0 (n � 1)�z, and b � i k0z�z

with k0z =
p

k20 � k2x � k2y. Equations (19) and (20)
are called the one-step split equations, while equa-
tions (21) and (22) are termed the symmetrically split
equations. Equation (19) is also called the one-step-
free one-step-perturbation split equation and equa-
tion (22) the half-step-free one-step-perturbation half-
step-free split equation. Jensen et al. (1994) showed
that the errors from splitting operator in the ap-
proaches (I) and (II) are second order in (�z), while
those from (III) and (IV) are third order in (�z). Fol-
lowing Jensen et al. (1994), it can be shown that in
equations (19){(22) the errors from approximation of
the integral in the exponential operator (i.e. the for-
mal solution of one-way wave equation) are all in order
(�z)2.

A 2D slice of the SEG/EAEG 3D salt model shown
in Figure 3 was used to compare the accuracy between
equations (19) and (22). The model was de�ned on a
grid 1024�300 with a grid spacing 12.192m. A point
source with a Ricker's time history and a dominant fre-
quency 20Hz was introduced at the center of the upper
boundary of the model. Seismograms calculated using
equations (19) and (22) were recorded at the bottom of
the model and are displayed respectively in Figure 4(a)
and (b). The di�erence between Figure 4(a) and (b)
as shown in Figure 4(c) is almost invisible. The rela-
tive di�erence is about 0.15%. Figure 4(d) shows the
di�erence blown up by a factor of 10.

For forward wave propagation, the innermost
Fourier transform and the outermost inverse Fourier
transform in equation (22) are not necessary except
the �rst and the last depth steps. The half-step-
free propagation can be combined with that for the
next depth level. Consequently, the computational
e�ciency of equation (22) becomes almost the same
as that of equation (19) but equation (22) provides a
slightly more accurate result than equation (19). How-
ever, these Fourier transforms in equation (22) are nec-
essary for the migration where the wave�elds for every
depth level are required to produce images. Therefore,
using equation (19) for migration is more e�cient than
using equation (22) while the accuracy for both equa-
tions are almost the same. Equation (21) requires an
additional complex number multiplication relative to
equation (19).

Conclusions

We have analyzed the error from expansion of the
square-root operator using the formal method and
compared the results with numerical tests. For large
velocity perturbations (double velocity contrast), both
formal and numerical error analyses suggest that the
phase-screen propagator can handle wave propagation
up to about 20 degrees relative to the main propa-
gation direction z-axis with �5% relative errors. For
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small velocity perturbations (� 10%), the formal er-
ror analysis indicates that the phase-screen propaga-
tor can be used for simulating wave propagation up
to about 45 degrees of propagation angle but numer-
ical analysis demonstrates that the angle can be up
to 60 degrees. We have analyzed and numerically ver-
i�ed the errors from splitting the exponential operator.
The symmetrically split equations are a little more
accurate than the one-step split equations. Numeri-
cal examples showed that the di�erences among split-
ting approaches are not signi�cant. From the com-
putational e�ciency point of view, the one-step-free
one-step-perturbation split equation is more suitable
for migration since it provides almost the same ac-
curacy as that of the symmetrically split equations.
The half-step-free one-step-perturbation half-step-free
split equation is almost as e�cient as the one-step split
equations for forward wave propagation problems.

Acknowledgements

This work is part of the Advanced Computational Tech-

nology Initiative. Funding came from the Department of

Energy O�ce of Basic Energy Sciences through contract

W-7405-ENG-36.

References

Cheng, N., Cheng, C. H., and Toks�oz, M. N., 1996, Error

analysis of phase screen method in 3-D: Geophys. Res.

Lett., 23, 1841{1844.

Huang, L.-J., and Wu, R.-S., 1996, Prestack depth migra-

tion with acoustic screen propagators: 66th Ann. Inter-

nat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,

415{418.

Jesen, F. B., KupermanW. A., Porter, M. B., and Schmidt,

H., 1994, Computational ocean acoustics: AIP Press.

Sto�a, P. L., Fokkema, J. T., de Luna Freire, R. M., and

Kessinger, W. P., 1990, Split-step Fourier migration:

Geophysics, 55, 410{421.

Wu, R.-S., and Huang, L.-J., 1992, Scattered �eld calcula-

tion in heterogeneous media using the phase-screen prop-

agator: 62nd Ann. Internat. Mtg., Soc. Expl. Geophys.,

Expanded Abstracts, 1289{1292.

Wu, R.-S., Huang, L.-J., and Xie, X.-B., 1995, Backscat-

tered wave calculation using the de Wolf approxima-

tion and a phase-screen propagator: 65th Ann. Internat.

Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1293{

1296.

  0 10000
Horizontal Distance (m)

 0

1000

2000

3000

D
ep

th
 (

m
)

8000600040002000 12000

20
00

30
00

40
00

  (
m

/s
)

Figure 3: 2D slice of the SEG/EAEG 3D salt model.
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Figure 4: Comparison of seismograms calculated by the

phase-screen propagators (a) with splitting approach (I),

(b) with splitting approach (VI). (c) is the results of sub-

tracting (b) from (a). (d) shows (c) multiplied by a factor

of 10.


